\qquad

C.U.SHAH UNIVERSITY Winter Examination-2022

Subject Name : Mathematics

Subject Code : 4CS01TMH1
Semester: 1
Date: 03/01/2023
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:

a) A set which have not a single element is called \qquad set.
a. Empty Set
b. Union
c. Intersection
d. None of These
b) In SET theory $A^{\prime}=$ \qquad

Branch: B.Sc.I.T.

Time: 11:00 To 01:30
a. Universal Set U
b. Empty Set
c. Fixed Set
d. None of these
c) A Set of Rule between to Non-empty set is called \qquad
a. Function
b. Set
c. Matrix
d. Standard Deviation
d) All diagonal Elements of are $\mathbf{1}$ is called \qquad Matrix.
a. Null
b. One
c. overflow
d. Scalar
e) A Matrix which all elements are 0 is called \qquad matrix
a. Grouped
b. NULL
c. Alternate
d. None of these
f) -------------- is not a types matrix.
c. NULL
a. Unit
d. Compose
g) Sum of all Diagonal elements is called as \qquad -
a. Trace of Matrix
c. Transpose of Matrix
b. Total of Matrix
d. None of these
h) ($\left.A^{\prime}\right)^{\prime}=$ \qquad
a. Empty Set
c. A
b. Universal Set
d. None of these
i) \qquad is a Mathematical Software.
b. SPSS
d.None of these
j) \qquad is a Statistical Software.
b.ALPHA
d. None of these
k) Define Term : Matrix
l) Define Term : Function
m) Define Term : SET
n) What do you mean by Scalar Matrix?

Attempt any four questions from $\mathbf{Q}-2$ to $\mathbf{Q - 8}$

(A) Let $\mathrm{A}=\{1,2,3,4\}$ find the range of each of the following functions.
(A) Prove Demrogan's law using set theory
(1) (AUB) ${ }^{\prime}=A^{\prime} \Omega \mathrm{B}^{\prime}$
(2) $(A \Omega B)^{\prime}=A^{\prime} U^{\prime}{ }^{\prime}$
(B) Universal SET U $=\{1,2,3,4,5,6,7,8,9,10\}$, SET $\mathbf{A}=\{1,2,3,4\}, \mathbf{B}=\{5,6,7\}$ and $C=\{6\}$ Find out the following
(1) (AUB)'
(3) A’U C
(5)A' $\Omega \mathrm{B}^{\prime} \Omega \mathrm{C}^{\prime}$
(2) $A^{\prime} \Omega B^{\prime}$
(4) B U C

Attempt all questions

(1) $f: A->R, f(x)=2^{x}$
(2) $\mathrm{g}: A->R, g(x)=|x-3|$
(3) $\mathrm{h}: \mathrm{A}->\mathrm{R}, \mathrm{h}(\mathrm{x})=\mathrm{x}^{2}-5 \mathrm{x}+6$
(B) If $f(x)=1 / 1-x$, Find the value of $f[f\{f(x)\}]$

Q-4

Attempt all questions
(A) What is Function? Explain the Classification of Functions in brief.
(B) Define following term with example.
(1) Transpose of Matrix (2) Trace of Matrix

Q-5 Attempt all questions
(A) If Set $A=\{1,2,3,4\}$, Set $B=\{1,3,5\}$, Set $C=\{4,6,8\}$, Set $D=\{5,7\}$ Find out the Following
(1) $A \times B \times C$
(2) $\mathrm{B} \times \mathrm{D}$ (3) $\mathrm{C} \times \mathrm{D}$
(B) Show that $(6,6),(2,3)$ and $(4,7)$ are the vertices of Right angled Triangle.

Q-6

Q-7

Q-8

Attempt all questions
(A) If $\mathrm{f}(\mathrm{x})=1+\mathrm{x} \quad$, Show that $\mathrm{f}[\mathrm{f}(\tan \varnothing)]=-\operatorname{Cot} \varnothing$
$1-\mathrm{x}$
(B) If Matrices $A=\left|\begin{array}{lll}8 & 2 & 3 \\ 1 & 1 & 2 \\ 3 & 2 & 1\end{array}\right|$

Find out $A^{2}-3 A+2 I$ where I is Scalar Matrix
(B) if Universal Set $\mathrm{U}=\{-3,-1,0,1,3\}, \mathrm{A}=\{-3,-1,1\}, \mathrm{B}=\{-1,1,3\}$ and $\mathrm{C}=\{-1,0,1\}$ then
verify following
(1)(AUB) $)^{\prime}=\mathrm{A}^{\prime} \Omega \mathrm{B}^{\prime}(2) \mathrm{AU}(\mathrm{B} \Omega \mathrm{C})=(\mathrm{AUB}) \Omega(\mathrm{AUC})$
(B) if Universal Set $\mathrm{U}=\{-3,-1,0,1,3\}, \mathrm{A}=\{-3,-1,1\}, \mathrm{B}=\{-1,1,3\}$ and $\mathrm{C}=\{-1,0,1\}$ then
verify following
(1)(AUB) $)^{\prime}=\mathrm{A}^{\prime} \Omega \mathrm{B}^{\prime}(2) \mathrm{AU}(\mathrm{B} \Omega \mathrm{C})=(\mathrm{AUB}) \Omega(\mathrm{AUC})$
(B) if Universal Set $\mathrm{U}=\{-3,-1,0,1,3\}, \mathrm{A}=\{-3,-1,1\}, \mathrm{B}=\{-1,1,3\}$ and $\mathrm{C}=\{-1,0,1\}$ then
verify following
(1)(AUB) $)^{\prime}=\mathrm{A}^{\prime} \Omega \mathrm{B}^{\prime}(2) \mathrm{AU}(\mathrm{B} \Omega \mathrm{C})=(\mathrm{AUB}) \Omega(\mathrm{AUC})$

Attempt all questions
(A) If Matrices $A=\left|\begin{array}{lll}8 & 2 & 3 \\ 1 & 1 & 2 \\ 3 & 2 & 1\end{array}\right|$
Find Out \mathbf{A}^{-1} (Inverse Matrix A)

Attempt all questions
(A) Define following terms
(1) Row and Column Matrix
(2) Diagonal Matrix
(3) Square Matrix
(4) Unit Matrix
(B) Explain Derivative of Function in Differentiation.

